Implementation of a Python Version of a Scaled Boundary Finite Element Method for Plate Bending Analysis
نویسنده
چکیده
Common finite element programs for plate bending analysis are complicated and limited by the common plate theories. Such programs are usually not user-friendly for designers to implement. Lately, Hou Man et al. from the University of New South Wales has developed a technique for unified 3D plate bending analysis using scaled boundary finite element analysis, which promises to have little restrictions on plate thicknesses and faster convergence. This thesis presents an implementation of a python version of their method, which, when combined with a modeling program like Rhinoceros, aids designers in studying plate bending behavior under static loading. It represents a first step in the development of interactive programs for structural design and analysis of plates. Thesis Supervisor: Jerome J. Connor Title: Professor of Civil and Environmental Engineering
منابع مشابه
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملA novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کاملBending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method
This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...
متن کامل